
Simulink® Test™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Release Notes
© COPYRIGHT 2015–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

R2017b

Test Harness Generation Callbacks: Customize harness
creation with post-create and post-rebuild callbacks 1-2

Harness Component Synchronization Comparison: Identify
differences in the component under test before explicitly
synchronizing harnesses . 1-2

Multirelease Testing: Execute test cases with older MATLAB
releases . 1-2

Signal Failure Navigation and Baseline Updates: Navigate
between signal comparison failure regions, and
automatically update baseline data 1-3

Expanded Microsoft Excel Support: Define test inputs and
expected outputs including bus support and data type
definition . 1-3

Test File Comparison: Identify differences by comparing two
test files . 1-4

Test Sequence Editor enhancements: Change step hierarchy,
reorder transitions, and cut/copy/paste test steps 1-5

Input and Baseline Signal Editing: Edit test case baseline and
input signal data . 1-5

Iteration Naming: Create rules to name autogenerated
iterations . 1-5

iii

Contents

External Inputs for Real-Time Applications: In test cases for
real-time applications, map external data inputs to root
Inport blocks . 1-6

Test Harness .MDL Support: Create test harnesses for models
saved in .MDL file formats . 1-6

Functionality Being Removed or Changed 1-6

R2017a

Harness Import: Simplify test harness management by
converting test harness models to Simulink Test
harnesses . 2-2

Expanded Test Harness Capabilities: Create test harnesses
with additional semantics, blocks, sources, and
synchronization behavior . 2-2

Support for Debug Mode: Debug system under test
simulation . 2-3

Time Tolerance: Specify leading and lagging time tolerance
in test cases . 2-4

Simscape Component Support: Create test harnesses for
subsystems connected by Simscape physical
connections . 2-4

Expanded API: Edit and manage Test Sequence Blocks with
an expanded API . 2-4

Signal Logging Selection: Specify signals to log in a test case
without modifying the model . 2-5

Proof Objective Support for verify() Statements: verify()
statements interpreted as proof objectives for Simulink
Design Verifier analysis . 2-5

iv Contents

Enhanced Reporting: Include MATLAB figures, save report
options, and automatically generate reports after
testing . 2-5

Test Manager Integration with Simulink Design Verifier:
Generate additional tests from within the Test Manager to
increase coverage . 2-6

Test Manager Hierarchies: Expand and collapse trees using
context menu . 2-6

Stop simulation at the end of test input data 2-6

Capture baseline data from test case iterations 2-6

Simplify test editor view by hiding unused sections 2-6

Test Case Conversion: Convert desktop simulation test cases
to real-time test cases . 2-7

Data dimension settings for certain test harness inputs 2-7

Run MATLAB Unit Tests in Fast Restart mode 2-7

R2016b

Custom Criteria: Define custom criteria for test case
evaluation . 3-2

MATLAB Unit Test Integration: Use MATLAB Unit Test to
execute and integrate tests . 3-2

Test Case Tagging: Filter and execute tests using custom
tags . 3-2

Graphical Output for Model Verification Blocks: Analyze
results from Assertion and Model Verification blocks in
Simulation Data Inspector and the Test Manager 3-2

v

Initialize and Terminate Functions: Test harnesses include
calls for initialize and terminate systems in a model 3-3

Harness Requirements Linking: Establish requirements
traceability for external test harnesses 3-3

Test Case Conversion: Convert test cases between baseline,
equivalence, and simulation test types 3-3

Additional Report Templates: Create PDF and HTML reports
using report templates . 3-3

Output Event Definition: Create Test Sequences that trigger
actions in other subsystems . 3-4

Access verify statement output using a programmatic
interface . 3-4

Revised visualization for verify statements and other
assessments . 3-4

Common test harness sources and sinks for signal and
control inputs, and revised signal routing 3-5

Add baseline criteria using expected outputs captured by
Simulink Design Verifier . 3-5

Set SIL or PIL simulation mode from the Test Manager for a
model referenced by a test harness . 3-6

Highlight dependencies in test harnesses using Model
Slicer . 3-6

View baseline data graphically . 3-6

R2016a

Real-Time Testing: Author and execute real-time tests with
Simulink Real-Time . 4-2

vi Contents

verify Statement: Author test sequence assessments to verify
simulation behavior without stopping the simulation 4-2

Test Report Customization: Customize test result reports
using Simulink Report Generator . 4-2

External Test Harnesses: Save Simulink Test harnesses as
external files . 4-2

Test Iterations: Create tests with iterations such as
parameters and input vectors . 4-2

Aggregate Coverage Results: Aggregate Simulink Verification
and Validation coverage results across executed tests . . . 4-3

Parallel Test Execution: Distribute test execution in parallel
to decrease test run time . 4-3

Test Harness for Libraries: Create and manage test harnesses
for library components . 4-3

Requirement Traceability: Link to requirements in test
harnesses and test sequences . 4-3

Simulink and Export Function Support: Create test
harnesses for models containing Simulink functions and
export functions . 4-4

Test Assessment block available for all harness sources 4-4

Test Sequence block support for messages 4-4

Test Sequence Editor enhancements . 4-4

Simulink Projects integration . 4-5

Test Generation for Subsystems . 4-5

vii

R2015aSP1

Bug Fixes

R2015b

Expanded Simulink Test API: Automate test creation, editing,
and execution using MATLAB scripts 6-2

Test Case Automation: Create test cases with inputs
generated by Simulink Design Verifier 6-2

Qualification and Certification: Qualify Simulink Test for
supported industry standards, including DO-178 and ISO
26262 . 6-2

Enhanced Reporting: Use Microsoft Word templates to
customize report generation . 6-2

Additional tools for Test Sequence editing and
debugging . 6-3

Simulink Report Generator inclusion for Test Sequence
block . 6-3

R2015a

Introduction to Simulink Test . 7-2

Test harness for subsystem and model testing 7-2

Test Sequence block for defining tests and assessments 7-2

viii Contents

Test Manager for test authoring and systematic test
execution . 7-2

Baseline, equivalence, and back-to-back testing with pass-fail
criteria . 7-3

Archiving and reporting test cases and test results 7-3

ix

R2017b

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

1

Test Harness Generation Callbacks: Customize harness creation with
post-create and post-rebuild callbacks

Customize test harnesses using callback functions that run after you create or rebuild
the test harness. For example, you can add custom source or sink blocks, add a plant
model for closed-loop testing of a controller, or enable data logging. Test harness
callbacks are reusable functions, allowing you to add or change harness features and
settings systematically. To create a callback:

1 Create the callback function. In the function, script the commands to customize the
test harness.

2 Specify the function as the Post-create callback method or Post-rebuild
callback method. For a new test harness, specify a post-create or post-rebuild
callback in the Advanced Properties of the test harness creation dialog box. For
an existing test harness, specify a post-rebuild callback in the harness properties
dialog box.

For more information and an example, see “Customize Test Harnesses”.

Harness Component Synchronization Comparison: Identify differences
in the component under test before explicitly synchronizing harnesses

Before synchronizing the component under test between the test harness and main
model, you can check whether the component under test differs from the component in
the main model by using sltest.harness.check. For more information on component
synchronization, see “Synchronize Changes Between Test Harness and Model”.

Multirelease Testing: Execute test cases with older MATLAB releases

You can develop baseline, equivalence, and simulation tests in the current MATLAB®
release and run the test simulations in a different release. Developing tests in the
current MATLAB release allows you to take advantage of recent Test Manager
developments and run simulations in your production environment. The release you run
the test in must support the features used in the test—for example, test harnesses—to
run.

For baseline tests, you can establish the baseline data in one release and run the test
case in that release. Or you can establish the baseline data in one release and run the
test in another release, enabling you to compare results from different releases.

R2017b

1-2

When running tests in multiple releases, your model or test harness must be compatible
with the MATLAB version running your test. Also, the MATLAB version must support
the features of your test case. Previous MATLAB versions do not support test case
features unavailable in that release. Certain test case features are not supported for
multiple release testing.

For more information, see “Run Tests in Multiple Releases”.

Signal Failure Navigation and Baseline Updates: Navigate between
signal comparison failure regions, and automatically update baseline
data

If a baseline test result includes failures, you can navigate between signal comparison
failures in the data inspector view of the Test Manager. From this view, you can update
the test baseline data in MAT-files. Updating the baseline data based on test failures is
useful if your failures are due to a recent model update, such as a parameter value
change.

For more information, see “Examine Test Failures and Modify Baselines”.

Expanded Microsoft Excel Support: Define test inputs and expected
outputs including bus support and data type definition

Microsoft® Excel® files in Test Manager can now specify detailed information about
signal data. You can use the expanded format for input signal data when you select an
Excel file as baseline criteria.

In previous releases, in Excel file format only scalar doubles were supported. Now you
can specify signal types (such as complex and multidimensional), data types, units,
interpolation, bus element information, and function-call execution times. To learn about
the format, see “Specify Microsoft Excel File Format for Signal Data”.

You can import multiple Microsoft Excel sheets at once to use as separate test input
groups or a range of data to import. You can also specify sheets and a range of cells to use
as baseline criteria.

The Test Manager API has some changes in support of the new capabilities.

1-3

• A new method, addExcelSpecification, for the
sltest.testmanager.BaselineCriteria and
sltest.testmanager.TestInput classes

• New arguments for specifying options for sltest.testmanager.TestInput files
with sltest.testmanager.TestCase.addBaselineCriteria and
sltest.testmanager.TestCase.addInput.

• A new property, ExcelSpecifications, for the
sltest.testmanager.BaselineCriteria and
sltest.testmanager.TestInput classes.

Compatibility Considerations

The refreshIfExists argument for
sltest.testmanager.TestCase.addBaselineCriteria has been replaced with a
Name,Value pair. Scripts that add MAT-files that use this argument will still work. See
“Functionality Being Removed or Changed” on page 1-6 for details.

The SheetName property for sltest.testmanager.TestInput has been replaced with
the ExcelSpecifications property. Scripts that use this property will still work. See
“Functionality Being Removed or Changed” on page 1-6 for details.

The sltest.testmanager.TestCase.addInput method by default now returns one
sltest.testmanager.TestInput object for each sheet in an Excel file added as a test
case input. In previous releases, this method returned a single
sltest.testmanager.TestInput object even if the Excel file had multiple sheets.

As a result, commands in existing scripts that operate on the result of this method might
return an error. An error occurs with commands that expect a single object. Modify any
such script to operate on an array instead. Or, to return a single option as in earlier
releases, set the 'SeparateInputs' option to false.

Test File Comparison: Identify differences by comparing two test files

You can review test changes or updates by comparing two test files side by side. Test file
comparison is similar to comparisons of other MATLAB files that you compare using
Compare on the MATLAB toolstrip.

For more information, see “Compare Test Files”.

R2017b

1-4

Test Sequence Editor enhancements: Change step hierarchy, reorder
transitions, and cut/copy/paste test steps

Create and edit test sequences with the enhanced Test Sequence Editor. For detailed
information, see “Test Sequence Editor”.

• Change the hierarchy level of a test step by indenting or outdenting the test step.
Right-click the test step, and select Indent to move it to a lower level, or Outdent to
move it to a higher level.

• Reorder test steps. When hovering over a step, three dots appear left of the step
name. Click and drag the dots to move the step to a new position within the same
hierarchy level.

• Reorder test step transitions. Hover over the transition number, then click and drag
the transition to the new order. The corresponding next step is maintained.

• Cut, copy, and paste test steps using the right-click context menu. You can paste
before or after a step, or paste as a substep.

Input and Baseline Signal Editing: Edit test case baseline and input
signal data

In R2017b, you can edit input signal data and expected outputs (baseline criteria) from
MAT-files and Microsoft Excel in the Test Manager. In previous releases, you edited only
Excel input files in the Test Manager.

You edit MAT-file data in the signal editor and Microsoft Excel data directly in Excel.
For more information on editing the baseline signal data, see “Manually Update Signal
Data in a Baseline”. For more information on editing input signals, see “Edit Input Data
Files in Test Manager”.

Iteration Naming: Create rules to name autogenerated iterations

When auto generating iterations for a test case, you can customize iteration names by
specifying a naming pattern. For more information, see “Create Table Iterations”.

1-5

External Inputs for Real-Time Applications: In test cases for real-time
applications, map external data inputs to root Inport blocks

You can use external data mapped to root Inport blocks in real-time tests. This facilitates
reusing desktop test cases in real-time testing, as both desktop and real-time tests can
access the same test input data stored in an external file.

In your test harness or model, use root Inport blocks as sources. In the test case Inputs,
map external data to the root Inport blocks using Microsoft Excel or MAT-files. For an
example of reusing a desktop test case using input data in an Excel file, see “Reuse
Desktop Test Cases for Real-Time Testing”.

Test Harness .MDL Support: Create test harnesses for models saved
in .MDL file formats

Test harnesses support models that use the .MDL file format. Test harnesses for .MDL
models are saved externally. For more information about externally vs. internally saved
test harnesses, see “Manage Test Harnesses”.

Functionality Being Removed or Changed

The Test Manager API has these changes.
Functionality Result Use Instead Compatibility Considerations
refreshIfExis
ts argument in
sltest.testma
nager.TestCas
e.addBaseline
Criteria

Still runs for
MAT-files

'RefreshIfExists'
,Boolean

SheetName
property for
sltest.testma
nager.TestInp
ut

Still runs ExcelSpecificatio
ns

SheetName is now read-only

R2017b

1-6

Functionality Result Use Instead Compatibility Considerations
sltest.testma
nager.TestCas
e.addInput

Now returns an
array with Excel
files if the file
had multiple
sheets

Use
'SeparateInputs',
false with existing
scripts

Use
'SeparateInputs',false
only to match functionality
from previous releases. The
default of true matches the
behavior in the interface.

1-7

R2017a

Version: 2.2

New Features

Bug Fixes

Compatibility Considerations

2

Harness Import: Simplify test harness management by converting test
harness models to Simulink Test harnesses

To simplify management and synchronization of standalone harness models, such as
those created manually, using Simulink Verification and Validation™, or Simulink
Design Verifier™, convert the standalone models to test harnesses in Simulink Test.
Converting standalone models to test harnesses allows you to iterate on your design
using push and rebuild functions, and manage test harnesses using the UI and
programmatic interface.

For more information, see Create Test Harnesses from Standalone Models and the
function sltest.harness.import.

Expanded Test Harness Capabilities: Create test harnesses with
additional semantics, blocks, sources, and synchronization behavior

1 Control when the component under test design synchronizes between the model and
harness. When creating a test harness, select the harness Synchronization Mode
in the Advanced Properties. For an existing harness, click the harness properties
badge to change the synchronization mode. For more information, see Synchronize
Changes Between Test Harness and Model. Synchronization modes include:

• Synchronize on harness open and close: The component in the main
model, or the test harness, is automatically updated when the harness closes or
opens.

• Synchronize on harness open: The component in the test harness is updated
when the harness opens.

• Synchronize only during push and rebuild: Synchronization does not
occur when the harness opens or closes. You manually control synchronization by
selecting Analysis > Test Harness > Push Component and Parameters to
Main Model or Analysis > Test Harness > Rebuild Harness from Main
Model.

2 Use Signal Builder blocks as sources for test inputs generated by Simulink Design
Verifier analysis. Signal Builder is a Harness Source option when you select
Export test cases to Simulink Test in the Simulink Design Verifier results dialog
box. For more information, see Test Models Using Inputs Generated by Simulink
Design Verifier™ .

R2017a

2-2

https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-harnesses-from-standalone-models.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.import.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html

3 Test user-defined functions by creating test harnesses for the following additional
blocks in the User-Defined Functions library:

• S-Function block
• S-Function Builder block
• Level-2 MATLAB S-Function block

4 Create test harnesses for subsystems within linked library blocks.
5 Move and clone test harnesses across different blocks in the same model or in

different models. See Move and Clone Test Harnesses and the functions
sltest.harness.move and sltest.harness.clone.

6 Create test harnesses for models that use a mix of asynchronous and rate-based
modeling.

7 Create test harnesses that honor the sorted execution order of blocks and
subsystems for export function modeling.

Compatibility Considerations

For sltest.harness.create and sltest.harness.set, the
'EnableComponentEditing' option is removed. Editing the component under test is
controlled by the CUT synchronization mode. Update scripts that use the
'EnableComponentEditing' option to specify 'SynchronizationMode'.

• To prevent editing the component under test in the test harness (previously specified
by 'EnableComponentEditing',false), use
'SynchronizationMode','SyncOnOpen'.

• To allow editing the component under test in the test harness (previously specified by
'EnableComponentEditing',true), use
'SynchronizationMode','SyncOnOpenAndClose' (default) or
'SynchronizationMode','SyncOnPushRebuildOnly'.

Support for Debug Mode: Debug system under test simulation

From the Test Manager, you can debug the system under test simulation. Click the
Debug button in the Test Manager toolstrip before executing the test. The simulation
pauses at simulation start and presents a debug prompt at the command line. You can

2-3

https://www.mathworks.com/help/releases/R2017a/sltest/ug/organizing-test-sequences-and-assessments_bu460gw-1.html#bvm8kcd
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.move.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.clone.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.create.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.set.html

step through simulation using the Stepping Options buttons in the Simulink Editor
toolstrip. For more information, see Use Simulation Stepper.

Time Tolerance: Specify leading and lagging time tolerance in test
cases

Account for temporal shifts in your test results using time tolerances. Some test cases,
such as real-time tests, are affected by timing attributes of the execution environment
and shifts in data logged from physical systems. You can account for timing differences
by including time tolerance in baseline and equivalence criteria. For details, see Apply
Tolerances to Test Criteria.

Simscape Component Support: Create test harnesses for subsystems
connected by Simscape physical connections

You can test subsystems connected by Simscape™ physical connections using test
harnesses. Test harnesses isolate Simscape subsystems, providing physical signal ports
at the subsystem interface. To define the physical system, add blocks to the test harness.
To connect Test Sequence and Test Assessment blocks to the physical system, use
Simulink-PS Converter and PS-Simulink Converter blocks.

Expanded API: Edit and manage Test Sequence Blocks with an
expanded API

The sltest.testsequence API includes additional functions to read, edit, and delete
test sequence steps, transitions, and data symbols. Use these functions to create, edit,
and manage Test Sequence and Test Assessment blocks. For more information, see the
Test Sequence Programming section on the Logic-Based Testing page.

The 'Label' property name has been changed to 'Action' to more closely match the
functionality of the argument in creating and editing test sequence steps. The change
applies to the functions

• sltest.testsequence.addstepafter
• sltest.testsequence.addstepbefore
• sltest.testsequence.addstep
• sltest.testsequence.editstep

R2017a

2-4

https://www.mathworks.com/help/releases/R2017a/simulink/ug/simulation-stepper-interface.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/how-tolerances-are-applied-to-test-criteria.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/how-tolerances-are-applied-to-test-criteria.html
https://www.mathworks.com/help/releases/R2017a/sltest/sequence-driven-testing.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstepafter.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstepbefore.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstep.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.editstep.html

Compatibility Considerations

If you have a script that uses these functions with the property name 'Label', running
the script returns a warning that 'Label' is removed. Update the script to use the
property name 'Action' instead of 'Label'.

Signal Logging Selection: Specify signals to log in a test case without
modifying the model

Using the Simulation Outputs section, you can log additional signals in the Test
Manager without changing the logging settings in your model. For more information, see
Simulation Outputs.

Proof Objective Support for verify() Statements: verify() statements
interpreted as proof objectives for Simulink Design Verifier analysis

If your model or test harness contains a verify() statement in a Test Assessment or
Test Sequence block, Simulink Design Verifier property proving analysis interprets the
verify() statement as a proof objective. This allows your verify() statements to be
used for both functional testing and formal analysis, without having to add Proof
Objective blocks to the model. Also, for verify() statements falsified, you can create
counterexamples that falsify the objective during simulation. For more information about
property proving, see Prove Properties in a Model. For more information about
verify() statements, see Assess Simulation Using Logical Statements.

Enhanced Reporting: Include MATLAB figures, save report options, and
automatically generate reports after testing
• You can include custom MATLAB figures in your report. For details, see Create,

Store, and Open MATLAB Figures.
• You can automatically create a report after executing a test file. In the test file, under

Test File Options, select Generate report after execution. The Test Manager
displays options for the report, which are saved with the test file. For details, see
Export Test Results and Generate Reports.

2-5

https://www.mathworks.com/help/releases/R2017a/sltest/ug/test-case-sections.html#bulu9ho
https://www.mathworks.com/help/releases/R2017a/sldv/ug/prove-properties-in-a-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-a-test-results-report.html

Test Manager Integration with Simulink Design Verifier: Generate
additional tests from within the Test Manager to increase coverage

If you have Simulink Design Verifier, you can generate tests to achieve additional
coverage starting from the coverage results pane in the Test Manager. After executing
tests, view the cumulative coverage results in the Test Manager results pane. Select the
coverage result and click Add Tests for Missing Coverage. For an example, see
Perform Functional Testing and Analyze Test Coverage.

Test Manager Hierarchies: Expand and collapse trees using context
menu

You can expand or collapse hierarchies in the Test Manager using the context menu. For
example, in the Test Browser pane, right-click a test file or test suite. From the context
menu, select Expand All or Collapse All. A similar context menu item appears in
hierarchies in the Results and Artifacts pane.

Stop simulation at the end of test input data

If you have timeseries test input data, you can limit the simulation data output by
stopping simulation at the end of the test input timeseries. For example, if your input
data stops after 10 seconds, but your model simulation time is set to 300 seconds, limit
the simulation to avoid 290 seconds of unnecessary data. Select Stop simulation at last
time point in the Inputs section of the test case definition.

Capture baseline data from test case iterations

If your test case is configured with table iterations, you can capture baseline data from
logged signals using a one-click process. Baseline criteria is captured in a separate file for
each iteration, and each baseline data file appears with its corresponding iteration in the
iterations table. For an example, see Capture Baseline Data from Iterations.

Simplify test editor view by hiding unused sections

You can simplify the view for test files, test suites, and test cases by hiding unused test
sections. In the Test Manager, click the Preferences button in the toolbar, and select
sections to hide or display. Populated sections are always displayed. This is a global Test
Manager setting. To customize view for multiple users, you can set the preferences

R2017a

2-6

https://www.mathworks.com/help/releases/R2017a/sltest/ug/functional-testing-and-coverage-analysis.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html#bvn5uaq

programmatically using sltest.testmanager.getpref and
sltest.testmanager.setpref. For more information, see Test Sections.

Test Case Conversion: Convert desktop simulation test cases to real-
time test cases

You can convert test cases that run on desktop simulation into real-time test cases. In
the Test Browser, right-click the test case name and select Convert to > Real-Time
Test.

Data dimension settings for certain test harness inputs

When you create a test harness using From Workspace, From File, or Constant blocks as
sources, the default value of the source reflects dimensions of the signal.

Run MATLAB Unit Tests in Fast Restart mode

The MATLAB Unit Test framework supports Fast Restart mode for running test cases
authored in Simulink Test.

2-7

https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testmanager.getpref.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testmanager.setpref.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/test-case-sections.html

R2016b

Version: 2.1

New Features

Bug Fixes

3

Custom Criteria: Define custom criteria for test case evaluation

You can customize test case pass and fail criteria using MATLAB and the MATLAB Unit
Testing framework. Use custom criteria in addition to assessments such as verify
statements and timeseries comparisons. For example, assess the final value of a signal,
set a maximum threshold, or post-process signal results using MATLAB toolboxes. With
MATLAB Unit Test, qualifications return pass or fail results to the Test Manager. See
Apply Custom Criteria to Test Cases.

MATLAB Unit Test Integration: Use MATLAB Unit Test to execute and
integrate tests

You can run tests authored in Simulink Test using the MATLAB Unit Test framework.
This allows you to combine execution of tests authored in both frameworks. You can
customize test execution with a test runner, and access test results in MATLAB.

With the MATLAB Unit Test framework, you can set up systematic testing using
continuous integration systems. Use plugins such as the TAPPPlugin to create results
that are compatible with CI systems such as Jenkins™. See Test Models Using MATLAB
Unit Test.

Test Case Tagging: Filter and execute tests using custom tags

You can group tests by assigning custom tags to test cases and suites, and filter tests to
view test case subsets. Running filtered tests can save time compared to running a full
test suite. Filter tests in the test browser using the syntax tag:<name>. To run filtered
tests, expand the drop-down menu under Run and select Run filtered. See Filter Test
Execution and Results.

Graphical Output for Model Verification Blocks: Analyze results from
Assertion and Model Verification blocks in Simulation Data Inspector
and the Test Manager

Blocks in the Model Verification library return a pass or fail result to the Test
Manager, using semantics similar to a verify statement. Viewing results graphically
helps you to:

R2016b

3-2

https://www.mathworks.com/help/releases/R2016b/sltest/ug/define-custom-criteria-for-test-case-results.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/run-test-files-using-matlab-unit-test.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/run-test-files-using-matlab-unit-test.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/filter-test-execution-and-results.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/filter-test-execution-and-results.html

• Determine the time when a failure occurs.
• Debug the model by comparing the verification result with relevant signals.
• Trace failures from the graphical results to the model.

See View Graphical Results From Model Verification Library.

Initialize and Terminate Functions: Test harnesses include calls for
initialize and terminate systems in a model

When you create a test harness for a model block diagram, you can include calls to
initialize and terminate systems. The test harness creates a Test Sequence block
configured to schedule function calls to initialize and terminate systems.

Harness Requirements Linking: Establish requirements traceability for
external test harnesses

Requirements linking is supported for test harnesses that are stored externally as
independent SLX files.

Test Case Conversion: Convert test cases between baseline,
equivalence, and simulation test types

You can convert existing test cases between baseline, equivalence, and simulation test
types. This helps facilitate test case reuse. For example, to reuse an existing baseline test
as an equivalence test, copy the baseline test and change the copied test case to an
equivalence test. To convert a test case,

1 In the Test Browser, right-click the test case name.
2 Select Convert to > Baseline Test / Equivalence Test / Simulation Test.

Additional Report Templates: Create PDF and HTML reports using
report templates

With a MATLAB Report Generator™ license, you can create custom PDF and HTML
reports from the Test Manager using report templates. In the Create Test Result Report

3-3

https://www.mathworks.com/help/releases/R2016b/sltest/ug/graphical-results-using-model-verification-block-library.html

dialog box, select a PDFTX or HTMTX template file. For more information, see Export
Test Results and Generate Reports, and Create Report Templates.

Output Event Definition: Create Test Sequences that trigger actions in
other subsystems

You can use trigger outputs in a Test Sequence block or Test Assessment block to
activate a triggered subsystem or signal an event in a Stateflow® chart. To create a
trigger output in a Test Sequence block,

1 In the test sequence editor Symbols pane, click the Add trigger icon next to the
Output section.

2 Enter the output name, and click Add trigger.

3 Trigger outputs initialize to 0. In the test sequence, use the send command to
activate the trigger output.

send(Output1)

Access verify statement output using a programmatic interface

Simulation data output from verify statements are available via a programmatic
interface. To get assessment results, use the sltest.getAssessments function.

Revised visualization for verify statements and other assessments

The Test Manager displays verify statement results and other assessments using a
stem plot, which plots the verify output data as stems extending from a baseline along
the x-axis. The baseline is a pass result, with stems extending from the baseline for
untested and fail results. Data color corresponds to the statement result:

R2016b

3-4

https://www.mathworks.com/help/releases/R2016b/sltest/ug/create-a-test-results-report.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/create-a-test-results-report.html
https://www.mathworks.com/help/releases/R2016b/rptgen/report-templates.html
https://www.mathworks.com/help/releases/R2016b/sltest/ref/sltest.getassessments.html

Color Result
Red Fail
Green Pass
Gray Untested

To maintain readability, plots adjust the data displayed if the result is the same for
numerous consecutive data points. Zooming in to smaller x-axis intervals displays
additional discrete data points. Changes in result are always displayed, for example,
from pass to fail. See Assess Simulation Using Logical Statements for an example. To
get assessment results programmatically, use the sltest.getAssessments function.

Common test harness sources and sinks for signal and control inputs,
and revised signal routing

When you create a test harness, additional inputs are connected to the specified harness
source and sink type, rather than to Inport or Outport blocks. Additional inputs expand
your ability to drive component inputs with a single source type for:

• Control inputs
• Function call inputs
• Data store memory
• Goto and From blocks
• Export function models
• Simulink functions

To simplify test harness block diagrams, the signal routing uses Goto and From blocks to
connect component under test input and output signals to Test Assessment blocks. Also,
some signal routing blocks are contained in input and output conversion subsystems.

Add baseline criteria using expected outputs captured by Simulink
Design Verifier

Simulation output captured by running Simulink Design Verifier tests are now included
as baseline data in test cases exported from Simulink Design Verifier to Simulink Test.

3-5

https://www.mathworks.com/help/releases/R2016b/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016b/sltest/ref/sltest.getassessments.html

Set SIL or PIL simulation mode from the Test Manager for a model
referenced by a test harness

From the Test Manager, you can override the simulation mode to software-in-the-loop
(SIL) or processor-in-the-loop (PIL) for a model referenced by a component under test in a
test harness. Overriding the referenced model simulation model applies to test harnesses
for block diagrams and test harnesses for Model blocks, since these types of test
harnesses use Model blocks as the component under test. Setting the simulation mode
from the Test Manager allows you to use an equivalence test and a single test harness to
perform SIL or PIL output equivalence verification.

Highlight dependencies in test harnesses using Model Slicer

If you have a Simulink Design Verifier license, you can use the Model Slicer to highlight
functional dependencies in test harnesses created by Simulink Test. Highlighting
functional dependencies helps you analyze behavior in large or complex test harnesses.
See Highlight Functional Dependencies.

View baseline data graphically

In the Test Manager, you can view a graph of test case baseline data. This facilitates
reviewing the baseline data before you map it to a test case and run tests. In the
Baseline Criteria section of the test case, highlight the signal name and click
Visualize. The graph appears in the Simulation Data Inspector.

R2016b

3-6

https://www.mathworks.com/help/releases/R2016b/sldv/ug/identify-model-interest-to-isolate-dependencies.html

R2016a

Version: 2.0

New Features

Bug Fixes

4

Real-Time Testing: Author and execute real-time tests with Simulink
Real-Time
A new Real-Time Test builds a Simulink Real-Time™ application from your model or test
harness and runs it on a target computer. You can assess the real-time execution using
verify statements, and collect real-time data for analysis in the Test Manager. See Test
Models in Real Time.

verify Statement: Author test sequence assessments to verify
simulation behavior without stopping the simulation
In the Test Sequence and Test Assessment blocks, you can use verify statements to
assess a logical condition without stopping simulation. A verify statement returns a
fail, pass, or untested result. Results of each verify statement appear in the Test
Manager. See Assess Simulation Using Logical Statements.

Test Report Customization: Customize test result reports using Simulink
Report Generator
You can write scripts to customize the details of Test Manager result reports such as text
formatting, output plots, headers and footers, layouts, and more. See Customize
Generated Reports.

External Test Harnesses: Save Simulink Test harnesses as external
files
You can opt to save your test harnesses externally, as independent SLX files. External
test harnesses allow you to create or change test harnesses without changing the model
SLX file, which is useful for models under change management. External harnesses
provide the same synchronization and push/rebuild capability as internal harnesses
saved with the model SLX file. See Manage Test Harnesses.

Test Iterations: Create tests with iterations such as parameters and
input vectors
To test and sweep through a range of parameters, inputs, and other test case settings,
you can author and organize many tests in one place using iterations. To help create

R2016a

4-2

https://www.mathworks.com/help/releases/R2016a/sltest/ug/test-models-in-real-time-and-assess-results.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/test-models-in-real-time-and-assess-results.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-custom-reports.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-custom-reports.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/organizing-test-sequences-and-assessments_bu460gw-1.html

iterations, templates are available for Signal Builder groups, parameter sets, inputs,
configuration settings, and baseline criteria. You can run iterations using fast restart if it
is supported by your model. See Run Multiple Combinations of Tests Using Iterations.

Test generated using Simulink Design Verifier now appear as iterations in a test case
rather than separate test cases in a test suite.

Aggregate Coverage Results: Aggregate Simulink Verification and
Validation coverage results across executed tests

If you have a Simulink Verification and Validation license, then you can collect the
coverage results from your tests. The results are aggregated at test case, test suite, and
test file levels. Coverage results can also be included in the Test Manager results report.
See Collect Coverage in Tests.

Parallel Test Execution: Distribute test execution in parallel to decrease
test run time

If you have a Parallel Computing Toolbox™ license, then you can run tests in parallel
across multiple workers to decrease test execution time. See Run Tests Using Parallel
Execution.

Test Harness for Libraries: Create and manage test harnesses for
library components

You can create test harnesses for library blocks and move test harnesses from linked
blocks to the library source. See Test Library Blocks.

Requirement Traceability: Link to requirements in test harnesses and
test sequences

If you have a Simulink Verification and Validation license, you can create requirements
links for model objects in internally stored test harnesses. Requirement links for the
component under test synchronize between the main model and the test harness. You
can also create requirements links for test steps in Test Sequence and Test Assessment
blocks. See Link Tests to Requirements.

4-3

https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/collect-model-coverage-in-tests.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-tests-using-parallel-execution.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-tests-using-parallel-execution.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/functional-testing-in-verification_bu394b1-1.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/use-requirements-based-test-cases.html

Simulink and Export Function Support: Create test harnesses for
models containing Simulink functions and export functions
If you generate a harness for a model configured to export functions, the harness will
contain a new Test Sequence block that schedules the function-call signals and Simulink
Functions in the export-function model. You choose the sources and sinks for other
subsystem inputs and outputs. See Test Models that use Export Functions for
AUTOSAR-Compliant Code.

Test Assessment block available for all harness sources
The Simulink Test library offers a separate Test Assessment block entry. You can
include a Test Assessment block with any test harness source using the test harness
creation dialog box. The Test Assessment block is a Test Sequence block configured with
a default When decomposition sequence and a verify statement, which are commonly
used in model assessment.

Test Sequence block support for messages
Test Sequence blocks support sending and receiving messages. Messages are objects that
carry data and can be queued. You can send a message using a message output and the
send command, and receive a message using a message input and the receive
command. When a test step receives a message, it can use the receive result or the
message data in a step action or transition. See Test Sequence Action and Transition
Operations.

Test Sequence Editor enhancements
The Test Sequence Editor offers several enhancements for the Test Sequence and Test
Assessment blocks.

• You can add a description for a test step using the Description field.

• Code generated from the block includes test step descriptions as commented code.
To include the commented descriptions in generated code, select Simulink block
descriptions in the Code Generation > Comments section of the model
configuration parameters.

• Simulink Report Generator includes descriptions in the Test Sequence block
reports.

R2016a

4-4

https://www.mathworks.com/help/releases/R2016a/sltest/examples/test-models-that-use-export-functions-for-autosar-compliant-code.html
https://www.mathworks.com/help/releases/R2016a/sltest/examples/test-models-that-use-export-functions-for-autosar-compliant-code.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/act-or-transition-using-temporal-and-event-operators.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/act-or-transition-using-temporal-and-event-operators.html

• Syntax highlighting: The Test Sequence Editor includes MATLAB syntax
highlighting for improved readability.

• Tab completion: The Test Sequence Editor suggests words, such as data symbols and
functions, to complete test step programming syntax. A list appears based on the
characters you type. Select a word from the list and press Tab, or press Esc to close
the suggestions.

• Port reordering: You can reorder block inputs and outputs by dragging an Input or
Output symbol name up or down in the Symbols sidebar.

Simulink Projects integration

You can create a Simulink project from a test file. When you create a project from a test
file, it enables you to perform file dependency analysis. Projects let you easily see the
impact that changes could have on tests that might use shared files. You can also run
tests directly from the Simulink Projects interface. For more information about Simulink
Projects integration, see Manage Test File Dependencies.

Test Generation for Subsystems

You can generate tests for a subsystem in a model from the Test Manager. The Test
Manager creates a test harness for the subsystem and enables you to test the subsystem
independently, thereby isolating it from the main model. See Generate Test Cases from
Model Components.

4-5

https://www.mathworks.com/help/releases/R2016a/sltest/ug/manage-test-file-dependencies.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-test-cases-from-model-components.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-test-cases-from-model-components.html

R2015aSP1

Version: 1.0.1

Bug Fixes

5

R2015b

Version: 1.1

New Features

Bug Fixes

6

Expanded Simulink Test API: Automate test creation, editing, and
execution using MATLAB scripts

You can use functions, classes, and methods to programmatically:

• Generate test cases from a model based on existing test harnesses and signal builder
groups. See sltest.testmanager.createTestsFromModel.

• Edit test case simulation properties, parameter sets, and comparison criteria
• Create test files, test suites, and test cases
• Copy and move test suites and test cases
• Run individual test suites and test cases
• Copy a test harness, including its contents, configuration set, properties, and model

association, using the sltest.harness.clone function

For more information about using the API, see Automate Tests Programmatically.

Test Case Automation: Create test cases with inputs generated by
Simulink Design Verifier

Starting with the results of a Simulink Design Verifier analysis, Simulink Test creates
test cases that use the inputs generated by Simulink Design Verifier. Test cases appear
in the Test Manager and can use an existing or new test harness. See Test Models Using
Inputs Generated by Simulink Design Verifier.

Qualification and Certification: Qualify Simulink Test for supported
industry standards, including DO-178 and ISO 26262

You can use the IEC Certification Kit and DO Qualification Kit to qualify Simulink Test
for supported industry standards, including DO-178, ISO 26262, and IEC 61508.

Enhanced Reporting: Use Microsoft Word templates to customize
report generation

If you have a MATLAB Report Generator license, you can insert report items from the
Simulink Test generated report into your own Microsoft Word templates. For more
information on report generation, see Export Test Results and Generate Reports.

R2015b

6-2

https://www.mathworks.com/help/releases/R2015b/sltest/ref/sltest.testmanager.createtestsfrommodel.html
https://www.mathworks.com/help/releases/R2015b/sltest/ref/sltest.harness.clone.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/test-models-programmatically.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-a-test-results-report.html

Additional tools for Test Sequence editing and debugging

The test sequence editor includes new tools you can use when creating, editing, and
debugging a test sequence, including

• Undo and redo edits
• Cut, copy, and paste test steps using keyboard shortcuts
• Simulation rollback

Simulink Report Generator inclusion for Test Sequence block

You can include data from Test Sequence blocks in a report, using the Test Sequence
component in Simulink Report Generator.

6-3

R2015a

Version: 1.0

New Features

7

Introduction to Simulink Test

Simulink Test provides tools for authoring, managing, and systematically executing
simulation-based tests. You can create nonintrusive test harnesses to test models and
subsystems. You can generate reports, archive and review test results, rerun failed tests,
and debug the component or system under test.

Test harness for subsystem and model testing

Test harnesses provide a separate, nonintrusive testing environment for your models. A
test harness associates with a particular model or model component and persists with
the model. You define tests by adding inputs and assessments to the harness, and you
can set harness-specific simulation parameters. The test harness synchronizes model
changes to the main model. The Test Manager can access the test harnesses in your
model. See Refine, Test, and Debug a Subsystem and Test Harness and Model
Relationship.

Test Sequence block for defining tests and assessments

Test Sequence blocks concisely define a series of test steps and transitions using
MATLAB action language. Each step defines the block output values and the condition
that triggers the transition to another test step. You can define a test step hierarchy
using different transition modes. Test Sequence blocks include concise output functions,
such as square and sawtooth, and operators that return temporal information, such as
the elapsed step time or the duration of a condition.

You can assess the model operation in the test sequence, or in a separate Test Sequence
block. See Test Downshift Points of a Transmission Controller and the Test Sequence
block.

Test Manager for test authoring and systematic test execution

The Simulink Test Manager enables you to organize and run large sets of tests for
Simulink models. Using the Test Manager, you can author and execute test cases
individually or as a batch. You can also link to test requirements from each test case if
you have a Simulink Verification and Validation license. After you execute tests, the test
outcome and any simulation output appear in the Results and Artifacts pane of the
Test Manager.

R2015a

7-2

https://www.mathworks.com/help/releases/R2015a/sltest/ug/refine-and-test-a-subsystem-in-isolation.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/relationship-between-harness-and-model-block-diagrams.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/relationship-between-harness-and-model-block-diagrams.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/test-downshift-points-of-a-transmission-controller.html
https://www.mathworks.com/help/releases/R2015a/sltest/ref/testsequence.html

Baseline, equivalence, and back-to-back testing with pass-fail criteria

You can test models using baseline and equivalence test case templates in the Test
Manager. Baseline test cases compare simulation output to defined expected outputs.
Equivalence test cases compare simulation output a second simulation. The simulation
output comparison is evaluated according to absolute or relative tolerances, which you
specify under Baseline Criteria or Equivalence Criteria. For more information on
tolerances, see How Tolerances Are Applied to Test Criteria.

Archiving and reporting test cases and test results

After you execute tests, you can export the results in the Results and Artifacts pane of
the Test Manager to a file or save them in a report. For more information on exporting
results and generating reports, see Export Test Results and Generate Reports.

7-3

https://www.mathworks.com/help/releases/R2015a/sltest/ug/how-tolerances-are-applied-to-test-criteria.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/create-a-test-results-report.html

